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On the roll-coupling instabilities of
high-performance aircraft

By Craig C. Jahnke

Department of Mechanical, Aerospace and Manufacturing Engineering,
Polytechnic University, Brooklyn, NY 11201, USA

High-performance aircraft configurations, characterized by a small span and swept
wings, have rolling moments of inertia that are significantly smaller than the pitching
or yawing moments of inertia. As a result, nonlinear coupling during high-roll-rate
manoeuvres produces significant yawing and pitching moments. For certain criti-
cal flight conditions, inertial coupling causes jump phenomena called roll-coupling
instabilities. These jump phenomena typically occur as a result of turning-point
bifurcations of the aircraft steady states. Analysis of the moment balances along the
steady solution branches provides physical insight into the causes of these instabili-
ties and potential means of eliminating them. Analysis performed by using the full
eight-degree-of-freedom equations of motion shows that the critical control-surface
deflections are essentially the same as for the fifth- and sixth-order equations of
motion. Solving the full eight-degree-of-freedom equations allows one to determine
the orientation of the aircraft before and after the instability. For the aircraft model
studied here, roll-coupling instabilities result in a change in sign of the angle of attack
of the aircraft. The equilibrium state of the aircraft changes from a spiral dive, with
the bottom of the aircraft closest to the axis of the spiral, to a spiral dive where
the top of the aircraft is nearest the axis of the spiral, or vice versa depending on
the trim angle of attack from which the manoeuvre was initiated. Pitching moment
balance is shown to be central to the instability.

Keywords: instability, roll-coupling; bifurcation; aircraft; dynamics; control loss

1. Introduction

Nonlinear flight dynamics became important with the introduction of high-speed,
highly manoeuvrable pursuit aircraft in the 1940s. Inertial coupling of lateral and
longitudinal motions during high-speed rolls resulted in instabilities that caused large
deviations in sideslip. Large vertical tail loads occurred as a consequence of the
excessive sideslip resulting in structural failure of the tails on several aircraft. The
first successful analysis of this phenomenon by Phillips (1948) showed that aircraft
with low inertia in roll could experience inertial instabilities in pitch or yaw for
certain critical roll rates. Subsequent work (Stone 1953; Rhoads & Schuler 1957;
Welch & Wilson 1957; Westerwick 1957; Pinsker 1958) focused on calculating the
maximum tail loads experienced during roll-coupling instabilities by performing time
simulations of aircraft manoeuvres.

By using simplified equations of motion, Gates & Minka (1959) were the first to
show that roll-coupling instabilities resulted in the aircraft jumping from one steady
flight condition to another. Hacker & Oprisiu (1974) used perturbation analysis to
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show that gravity had a small effect on roll-coupling instabilities. Schy & Hannah
(1977) and Young et al . (1980) went on to analyse the pseudo-steady states of an
aircraft. Pseudo-steady states are steady solutions to the equations of motion for
an aircraft where the roll angle is assumed to be zero, and the pitch angle and
aircraft speed are fixed constant values. These approximations allow one to solve
for equilibrium solutions while maintaining the important nonlinearities in angle
of attack and roll rate. This work showed that the jump phenomenon occurred as a
control-surface deflection was varied past some critical value beyond which the initial
steady solution ceased to exist, i.e. at a turning-point bifurcation of the pseudo-steady
states. Thus the instability could be predicted and, more importantly, avoided by
instructing pilots to avoid critical control-surface deflections.

The availability of continuation methods (Keller 1977) made it possible to calcu-
late the steady solutions of the complete equations of motion, including a nonlinear
aerodynamic model. It was now possible to study not only roll-coupling instabili-
ties, where nonlinearities due to inertial coupling are important, but also stall/spin
divergence where both inertial coupling and nonlinear aerodynamics are important.
Carroll & Mehra (1982), Guichteau (1982, 1990), Planeaux (1988), Planeaux et al .
(1990) and Jahnke & Culick (1988, 1994) used continuation methods to analyse the
steady and/or limit cycle solutions of model jet fighter aircraft. Jahnke & Culick
(1988) analysed roll-coupling instabilities of a model fighter aircraft by using a con-
tinuation technique to determine the steady solutions of the sixth-order equations of
motion. Critical control-surface deflections at which the instabilities occurred were
determined and related to Hopf and turning-point bifurcations.

In this paper, roll-coupling instabilities are revisited. The details of the moment
balance in the steady solutions are examined to develop an understanding of the cause
of the jump phenomenon. Additionally, the change in orientation of the aircraft as
a result of the instability is examined by studying the full eight-degree-of-freedom
(eight-DOF) equations of motion. The roll-coupling instability is shown to cause the
aircraft to go from spiral dive, where the aircraft bottom is closest to the spiral axis,
to a spiral dive where the aircraft top is closest to the axis of the spiral, or vice
versa. Comparisons with previous results from the fifth- and sixth-order equations
of motion show that the critical control-surface deflections are virtually identical for
fifth-, sixth- and eight-order equations of motion.

2. Model of aircraft dynamics

The equations of motion used in this work assume a rigid aircraft and constant
atmospheric density. In a principal axis system, the equations can be written,

ṗ =
Iy − Iz
Ix

qr +
`

Ix
, (2.1)

q̇ =
Iz − Ix
Iy

pr +
m

Iy
, (2.2)

ṙ =
Ix − Iy
Iz

pq +
n

Iz
, (2.3)
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α̇ = q − (p cosα+ r sinα) tanβ +
1

MV cosβ
(Z cosα− (X + T ) sinα)

+
g

V cosβ
(sinα sin θ + cosα cos θ cosφ), (2.4)

β̇ = p sinα− r cosα+
1

MV
(Y cosβ − ((X + T ) cosα+ Z sinα) sinβ)

+
g

V
(cosα sinβ sin θ + cosβ cos θ sinφ− sinα sinβ cos θ cosφ), (2.5)

V̇ =
1
M

(((X + T ) cosα+ Z sinα) cosβ + Y sinβ)

+ g(sinβ cos θ sinφ− cosα cosβ sin θ + sinα cosβ cos θ cosφ), (2.6)

θ̇ = q cosφ− r sinφ, (2.7)

φ̇ = p+ (q sinφ+ r cosφ) tan θ, (2.8)

ψ̇ = (q sinφ+ r cosφ) sec θ. (2.9)

Note that the yaw angle, ψ, does not appear on the right-hand side of any of the
equations of motion, so steady states are determined from equations (2.1)–(2.8) by
setting the time derivatives to zero and solving the resulting algebraic equations.
In general, the yaw angle will vary with time for an aircraft steady state, since the
only possible steady solutions represent either purely longitudinal flight (no lateral
motion), or, more generally, flight along a helical flight path where the yaw angle
(i.e. heading) changes with time.

Often the effect of gravity is neglected in studies of aircraft dynamics by simply
setting g to zero in equations (2.4)–(2.6). The Euler angles (θ, φ, ψ) are then decou-
pled from equations (2.1)–(2.6), and one is left with a reduced set of equations of
motion. Since the velocity of the aircraft will not be quantitatively correct without
the acceleration of gravity, a constant flight speed is often specified and equations
(2.1)–(2.5) are used to simulate the aircraft motion. This gives a fifth-order system of
differential equations for the state of the aircraft, and one can determine the thrust
required to maintain this speed from equation (2.6). The other option is to specify
a constant thrust and solve for the velocity as a function of time knowing there will
be some error as a result of neglecting gravity (i.e. the weight of the aircraft).

The aerodynamic model used in this study was obtained from Young et al . (1980)
and has the form,

X = QS(CX(α) + δeCXδe(α)),

Y = QS

(
βCYβ (α) + δaCYδa(α) + δrCYδr(α) +

b

2V
(pCYp(α) + rCYp(α))

)
,

Z = QS(CZ(α) + δeCZδe(α)),

` = QSb

(
βC`β (α) + δaC`δa(α) + δrC`δr(α) +

b

2V
(pC`p(α) + rC`r(α))

)
,

m = QSc

(
Cm(α) +

c

2V
qCmq(α) + δeCmδe(α)

)
,

n = QSb

(
βCnβ (α) + δaCnδa(α) + δrCnδr(α) +

b

2V
(pCnp(α) + rCnr(α))

)
.
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All aerodynamic coefficients are tabulated for angles of attack from −10 to 90◦ in
increments of 5◦. The continuation method used here requires all functions to have
continuous first derivatives, so the tabulated data were fitted with cubic splines with
tension. The aerodynamic model is linear in sideslip angle, so results will only be
valid for sideslip angles between ±10◦ at most. Also note that no compressibility
effects are included in the aerodynamic model. Atmospheric density was assumed to
be constant and equal to 0.237 kg m−3 and the thrust-to-weight ratio was set to 0.12
for all results presented here.

3. Results and discussion

(a) Multiple steady solution branches

A fundamentally important characteristic of nonlinear dynamical systems, such
as the equations of motion for an aircraft, is that multiple solutions can exist for
specified parameter values. These solutions may be steady states, limit cycles, or
aperiodic (e.g. chaotic) motions. Multiple solutions are the norm for most aircraft
over the entire range of control surface and thrust settings. For example, spin modes
often coexist with desirable manoeuvring and cruising flight conditions. Aircraft
instabilities often result in transitions from one solution to another as bifurcations
lead to the disappearance of a desired flight condition or cause it to become unstable.
As a result, the aircraft enters a new flight condition that can be undesirable or even
dangerous.

The current aircraft model possesses several equilibrium states for given control
surface and thrust settings. Figure 1 presents the steady solutions of the eighth-order
equations of motion as a function of elevator deflection for zero aileron and rudder
deflections. These steady solutions were determined with a continuation method
based on the work of Doedel & Kernevez (1985). Continuation techniques determine
branches of solutions as a function of one parameter of the system, but an initial
solution is needed as a starting point. It is often difficult to determine the steady
solutions of a nonlinear system of equations such as the equations of motion for an
aircraft, and it is usually impossible to prove that all possible steady solutions have
been determined.

Stable steady solutions can often be determined with time simulations, but if
multiple stable solutions exist, the solution that is eventually approached depends
on the chosen initial condition. It is not feasible to try all possible initial conditions,
so one could miss stable steady solution branches. Unstable solution branches cannot
be found with a time simulation, making it even more difficult to find branches of
unstable solutions. Since the aircraft will not enter an unstable flight condition in
flight, one may be tempted to dismiss the importance of unstable solutions, but this
would be an error for several reasons. First, an unstable solution may become stable
as the control-surface deflections or other system parameters are varied. Transient
behaviour can also be strongly affected by unstable steady solutions. For example,
limit cycles often involve the system oscillating around an unstable steady solution.
Wing rock is an example of this, as can be seen by plotting a phase diagram of a
wing-rock oscillation (e.g. α versus β) and including the trim condition on the phase
plot. Examples of this behaviour can also be found in books on dynamical systems
theory (e.g. Guckenheimer & Holmes 1983). More complicated oscillations can occur
when the system oscillates around multiple unstable steady solutions (Jahnke et al .

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


On the roll-coupling instabilities of high-performance aircraft 2227

Figure 1. Steady states for δa = 0, δr = 0: ——, stable; – – –, unstable.

1998). Typically, a steady solution has several stable linear modes and one or more
unstable linear modes. Then the system may approach the unstable steady state in a
stable direction, but eventually will leave the vicinity of the unstable steady solution
in the unstable direction. Thus, the knowledge of the unstable steady solutions can
provide insight into the physics of the motion. In this report, only steady solutions
will be discussed, but complicated oscillations have been found to occur for high-
performance aircraft (Planeaux et al . 1990).

Initial steady solutions for this work were found by using the iteration routine of
Young et al . (1980) on the fifth-order equations of motion. Gravity was then used
as a continuation parameter to connect these pseudo-steady states, where gravity is
neglected, to solutions of the full eighth-order equations of motion. All solutions of
the fifth-order equations of motion were connected to equivalent solutions in the full
equations of motion. This technique provided six of the solution branches in figure 1.
Since the equations of motion and the aircraft model is symmetric in the lateral
variables, only the positive roll-rates solutions are presented in figure 1. Thus, the
solution branches for p, r, β, and φ are symmetric about zero while the longitudinal
variables (q, α, V, θ) are the same on the symmetric branches. This aircraft then has
at least 11 steady solutions (one on the trim branch and on each of five symmetric
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branches) for an elevator deflection of, say, −10◦. This can be seen by counting the
number of times a vertical line representing δe = −10 intersects a steady solution
branch taking into account the symmetric counterparts not present in figure 1.

Stable wings level trimmed flight is seen to exist for elevator deflections between
−15 and +3◦, or equivalently, between angles of attack of −3 and +25◦. The aircraft
loses stability at a Hopf bifurcation near an angle of attack of 25◦, where this aircraft
loses directional stability (i.e. Cnβ becomes negative). Steady solution branches with
non-zero lateral motions represent spiral and spin modes for this aircraft as illustrated
by the large yaw rates. All of the spin modes are unstable for this aircraft model, but
the model does not include aerodynamic nonlinearities as a function of the yaw rate
so the predicted spin modes are not likely to be physically relevant. As discussed by
Chambers et al . (1969), if one hopes to simulate the spin modes of an aircraft, it is
necessary to include the nonlinear aerodynamic yawing moments that occur at high
yaw rates. Rotary balance data are often used for this purpose, but it has proved
difficult to obtain wind tunnel data that match full-scale aircraft aerodynamics. Mach
number effects are not included in the aerodynamic model used here, so the steady
solutions representing high-speed dives are most likely not quantitatively correct.
One must always be careful to remember that the results of an analysis are only
as good as the model and accurate aerodynamic models for full-scale aircraft are
extremely difficult to obtain.

The six steady solution branches discussed above are qualitatively similar for the
five-, six- and eight-DOF systems (cf. Young et al . 1980; Jahnke & Culick 1988). The
largest difference is in the velocity of the aircraft, where one would expect there to
be some differences as a result of neglecting the contribution of the aircraft weight.
In particular, the dive the aircraft enters for elevator deflections greater than zero
cannot be predicted if gravity is neglected. As a result, the pitchfork bifurcation that
occurs near an elevator deflection of 3◦, where the aircraft becomes inverted, does
not occur if gravity is neglected. The pitchfork bifurcation gives rise to a symmetric
pair of solutions that represent inverted spirals.

The current aerodynamic model is symmetric in the lateral variables, but this
would not be true for a real aircraft. Inevitable asymmetries would be introduced
due to the production process or the asymmetric placement of external devices such
as probes, fuel tanks, or weapons. This would lead to an unfolding of the pitchfork
bifurcation, resulting in a separate branch of solutions unconnected to the primary
solution branch. The unconnected branch of solutions would disappear at a critical
elevator deflection in a turning-point bifurcation, but where this bifurcation occurs
would depend on the degree of asymmetry in the system. Thus, it is important to
model the aerodynamics of the actual aircraft as closely as possible. Again, the results
of the analysis are only as good as the model of the aircraft.

(b) Roll-coupling instabilities

Roll-coupling instabilities occur during manoeuvres involving high roll rates, where
inertial coupling becomes appreciable; i.e. the terms ((Iz − Ix)/Iy)pr in the pitching
moment equation and ((Ix−Iy)/Iz)pq in the yawing moment equation become signifi-
cant in the moment balance. For typical high-performance aircraft, Ix is significantly
smaller than Iy and Iz as a result of the mass of the aircraft being concentrated
along the fuselage due to the typical small span, highly swept wings. For the present
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Figure 2. Steady states for δe = −3, δr = 0: ——, stable; – – –, unstable.

aircraft model Ix = 35 398 kg m2, Iy = 157 576 kg m2 and Iz = 178 460 kg m2. Note
that Iy and Iz are typically close in value, so inertial coupling produces relatively
small rolling moments. Also, for a manoeuvring aircraft the roll rate is large while the
pitch and yaw rates are substantially smaller so the predominant inertial coupling
is for large roll rates to produce significant pitch and yaw moments through inertial
coupling.

Figure 2 shows the steady states for rolls from the trim condition at an elevator
deflection of −3◦. Since the aerodynamic model is symmetric in the lateral variables
and the aileron deflection, only positive roll-rate solutions are shown. Lateral vari-
ables (p, r, β, φ) are anti-symmetric, while longitudinal variables (q, α, V, θ) are sym-
metric in the aileron deflection, along curves of steady solutions. The roll response
of this aircraft is good; the steady roll rate increases linearly with aileron deflec-
tion for aileron deflections up to 10◦, where the roll rate has reached 100◦ s−1. For
aileron deflections larger than 10◦ the roll rate is relatively constant, most likely as a
result of the opposing moment caused by dihedral effect when the sideslip becomes
appreciable. Moderate pitch and yaw rates also build up as the aileron deflection is
increased.
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Figure 3. Moment balance in steady states for δe = −3, δr = 0. (a) 1−(Iy−Iz)qr/Ix, 2−β`β/Ix,
3−δa`δa/Ix, 4−p`p/Ix, 5−r`r/Iz. (b) 1−(Iz−Ix)pr/Iy, 2−m(α)/Iy, 3−qmq/Iy, 4−δemδe/Iy.
(c) 1− (Ix − Iy)pq/Iz, 2− βnβ/Ix, 3− δanδa/Ix, 4− pnp/Ix, 5− rnr/Ix.

Since the full eight-DOF equations of motion are solved, the orientation of the
aircraft can be described. Small aileron deflections cause the steady-state orientation
of the aircraft to change significantly. For aileron deflections of more than a few
degrees, the aircraft pitches down to a pitch angle near −80◦. Large roll angles and
a drastic increase in velocity also occur as the aircraft enters a spiral dive. The large
velocity in the dive means that a realistic aerodynamic model would need to include
Mach number effects, which are not included in the current model.

It was mentioned above that the roll rate most likely saturates as a result of
sideslip build up and the dihedral effect. This can be seen to be the case by examining
figure 3, which shows the various terms in the moment balances about each aircraft
axis. For small aileron deflections the roll moment due to aileron deflection (3−δa`δa)
is balanced by damping in roll (4 − p`p). Pitching moment balance is achieved by
changing the angle of attack (curve 2) to balance the moment created by the elevator
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Figure 4. Steady states for δe = 0, δr = 0: ——, stable; – – –, unstable.

deflection (curve 4). Yawing moment balance is mainly between the dihedral effect
(2 − βnβ) and inertial coupling with smaller contributions from aileron deflection
and damping in yaw. Since inertial coupling becomes stronger with increasing roll
rate, sideslip increases with increasing aileron deflection so the directional stability
is sufficient to balance the inertial coupling moment. The sideslip then acts to kill
the roll through the dihedral effect (see figure 3a). Inertial coupling also produces
appreciable nose-up pitching moments for large aileron deflections. Even though no
instability occurred due to inertial coupling, it has a strong influence on the aircraft
motion as it tends to diminish the maximum roll rate of the aircraft.

Roll-coupling instabilities are found to occur for this aircraft for rolls initiated
from small or negative angles of attack. Figure 4 shows the steady solutions for rolls
initiated from a trim angle of attack of 1.7◦ (δe = 0). For aileron deflections less than
25◦, figure 4 closely resembles figure 2. For small aileron deflections, the aircraft enters
a spiral dive and the roll rate increases linearly for aileron deflections up to 20◦, but
saturates for larger aileron deflections. A turning-point bifurcation is found to occur
at an aileron deflection near 30◦. This turning point will cause a jump in the state
of the aircraft if the aileron deflection is increased past the critical value evincing
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Figure 5. Time simulation of roll-coupling instability for δe = 0, δr = 0.

behaviour characteristic of roll-coupling instabilities. One cannot predict the final
state of the aircraft after the jump as the aircraft could enter any stable condition,
such as a new steady state, a limit cycle or some aperiodic motion. Knowledge of
the steady solutions allows one to predict the occurrence of instabilities, but time
simulations are necessary to predict the effect of the instability on the aircraft. The
details of the manoeuvre in which the instability is encountered may influence the
final state of the aircraft if multiple stable motions exist for the final control-surface
deflections of the aircraft.

Figure 5 shows a time simulation of the aircraft undergoing a roll-coupling insta-
bility by increasing the aileron deflection beyond the critical value at which the
turning-point bifurcation occurs. Initially, the aileron deflection is increased to 25◦, a
deflection less than the critical value. No instability occurs as the aircraft approaches
the steady solution. Large jumps are seen to occur in the rotation rates of the aircraft
and the sideslip angle between times of 20 and 25 s, where the aileron deflection is
increased past the critical value. The angle of attack only changes a few degrees as a
result of the instability, but more importantly the angle of attack changes sign. Thus
the aircraft goes from a spiral motion where the top of the aircraft faces the axis of
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Figure 6. Moment balance in steady states for δe = 0, δr = 0. (a) 1− (Iy− Iz)qr/Ix, 2−β`β/Ix,
3−δa`δa/Ix, 4−p`p/Ix, 5−r`r/Iz. (b) 1−(Iz−Ix)pr/Iy, 2−m(α)/Iy, 3−qmq/Iy, 4−δemδe/Iy.
(c) 1− (Ix − Iy)pq/Iz, 2− βnβ/Ix, 3− δanδa/Ix, 4− pnp/Ix, 5− rnr/Ix.

the spiral to one where the bottom of the aircraft faces the axis of the spiral as can be
deduced from the steady-state pitch and roll angles. Eventually, the aircraft enters
the steady state represented in figure 4 that occurs at the final aileron deflection of
35◦. The simulation results are shown for a shorter period of time so the details of the
instability can be seen. It takes a relatively long time for the velocity and pitch angles
to reach their final values while the other variables quickly approach the equilibrium
values. The roll rate initially increases very quickly as a result of the instability, but is
slow to reach the equilibrium value because the damping due to roll rate depends on
the velocity of the aircraft. Note that we may have expected the aircraft to approach
this steady state based on figure 4, but one must perform the simulation to be sure
as multiple stable motions typically exist for most control-surface deflections.

Further insight into the roll-coupling phenomenon can be gained by examining
the moment balance in the steady states. Comparing figures 3 and 6 shows that the
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rolling and yawing moment balances are qualitatively the same for the case when
roll-coupling instability is absent (figure 3) and when it is present (figure 6). The
rolling moment applied by the aileron is balanced by the damping in roll and the
dihedral effect, while inertial yawing moments are balanced by directional stability
leading to the buildup of sideslip. The pitching moment balance, however, is different
for the two cases. For an elevator deflection of 3◦ (figure 3) the angle of attack is
used to balance the pitching moment caused by the elevator. A nose-up moment
is created by inertial coupling, but it is not sufficient to change the fundamental
pitching moment balance.

For zero elevator deflection (figure 6) no pitching moment is created by the elevator,
so the moment balance is between the inertial coupling moment and the moment due
to angle of attack. For small aileron deflections the angle of attack grows in response
to the stronger inertial coupling that occurs as the roll rate increases (see figure 4).
Eventually, the pitch rate grows enough to also help balance the inertial coupling
moment. Once the combination of angle of attack and pitch rate are insufficient to
balance the inertial moment, the inertial moment must decrease in order to maintain
equilibrium. This occurs by decreasing the yaw rate (see figure 4). Near the turning
point the yaw rate changes sign causing the inertial pitching moment to change sign.
Since the angle of attack is used to balance the inertial pitching moment, the angle
of attack must also change sign. Thus the instability is a transition from positive
angle of attack flight to negative angle of attack flight, representing the two types of
spiral motions described above.

Since the roll-coupling instability discussed above caused the aircraft to go from a
steady flight condition with a positive angle of attack to one with a negative angle
of attack, one may wonder what occurs if a roll is initiated from a negative angle of
attack. Figure 7 shows the steady solutions as a function of aileron deflection with
an elevator deflection of 3◦, for which the trim angle of attack is −2◦. At trim the
aircraft is flying inverted with a pitch angle near −165◦. Very small aileron deflections
cause the aircraft to enter a spiral dive. The pitch angle approaches −90◦, the roll
angle becomes non-zero and the velocity increases to very large values. A turning-
point bifurcation occurs at an aileron deflection of 12◦ leading to a jump in the state
of the aircraft if the aileron deflection is increased past that critical value, again
representative of a roll-coupling instability for the aircraft.

Similar to the roll initiated from a positive trim angle of attack, a large jump in
roll rate occurs (from 260 to 400◦ s−1) as a result of the roll-coupling instability while
the yaw rate and angle of attack change signs. In this case the angle of attack goes
from negative to positive as the aileron deflection is increased past the critical value,
indicating that the aircraft has transitioned from a spiral with the bottom of the
aircraft towards the axis of the spiral to one where the top of the aircraft faces the
axis of the spiral. This is the reverse of the sequence that occurs for rolls initiated
from a positive trim angle of attack, but the physics of the instability is equivalent.

Figure 8 shows the moment balances about the aircraft axes in the steady states
for an elevator deflection of 3◦. Yawing moment balance is again maintained between
inertial coupling and the directional stability leading to a build-up in sideslip angle.
In the present case negative sideslip occurs, so in the rolling moment balance dihedral
effect adds to the moment caused by the aileron resulting in a larger roll rate being
necessary to obtain sufficient damping in roll. Thus for a given aileron deflection,
the roll rate is larger for rolls initiated from negative angles of attack than for rolls
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Figure 7. Steady states for δe = 3, δr = 0: ——, stable; – – –, unstable.

initiated from positive angles of attack. Physically, this means that for a given aileron
deflection spiralling the aircraft, with the bottom of the aircraft towards the axis of
the spiral, leads to larger roll rates than when the top of the aircraft is towards the
axis of the spiral. The reverse would occur for an aircraft with negative dihedral
effect (i.e. C`β > 0).

The ultimate cause of the roll-coupling instability can again be seen in the pitching
moment balance (figure 8b). For small aileron deflections, pitching moment balance
is maintained between the angle of attack and the elevator deflection. As the inertial
coupling moment increases, the angle of attack becomes a larger negative value to
maintain the moment balance. When this is not sufficient (i.e. for steady solutions
beyond the instability), the moment balance is principally between the effects of
elevator deflection and inertial coupling with a smaller contribution from angle of
attack. As in the previous case, the sign of the inertial moment changes as a result
of the instability, again due to the yaw rate changing signs.

The critical aileron and elevator deflections at which roll-coupling instabilities
occur is shown in figure 9. Only the control-surface deflections for positive roll-
rate solutions are shown. Negative roll-rate solutions have critical control-surface
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Figure 8. Moment balance in steady states for δe = 3, δr = 0. (a) 1− (Iy− Iz)qr/Ix, 2−β`β/Ix,
3−δa`δa/Ix, 4−p`p/Ix, 5−r`r/Iz. (b) 1−(Iz−Ix)pr/Iy, 2−m(α)/Iy, 3−qmq/Iy, 4−δemδe/Iy.
(c) 1− (Ix − Iy)pq/Iz, 2− βnβ/Ix, 3− δanδa/Ix, 4− pnp/Ix, 5− rnr/Ix.

deflections of the opposite sign in aileron deflection for the same elevator deflection.
That is, the complete figure would have symmetry about zero aileron deflection. The
Hopf bifurcations that occur near the turning-point bifurcations are also shown. Note
that two regions of instability occur. One region is for rolls initiated from positive
trim angles of attack while the other region represents instabilities of rolls initiated
from negative angles of attack. These two instabilities are not directly connected as
no instability occurs for elevator deflections between 1.0 and 1.5◦.

Critical aileron and elevator deflections at which roll-coupling instabilities occur
are virtually identical for the fifth-, sixth- and eighth-order equations of motion (cf.
Young et al . 1980; Jahnke & Culick 1988). Thus gravity does not affect the instabil-
ity, which is not surprising given the above results which show that the instability
arises in the moment balance and gravity does not directly affect the moment on the
aircraft. Aircraft flight speed does not affect the critical control-surface deflections
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Figure 9. Bifurcation set for roll-coupling instability with δr = 0:
——, turning point; – – –, Hopf bifurcation.

either, as the fifth-, sixth- and eighth-order equations of motion have different steady
velocities. This is an artefact of neglecting compressibility effects, which means that
the velocity only affects the dynamic pressure, which cancels out in determining the
critical control-surface deflections at which bifurcations occur. The state of the air-
craft at the turning point is not the same for the three different systems of equations
of motion as the rotation rates scale with the velocity while the angles of attack and
sideslip are independent of aircraft speed.

4. Conclusions

Several key aspects of nonlinear aircraft dynamics have been illustrated in this paper.
Multiple steady solutions for fixed aircraft parameters are the norm due to the nonlin-
earity of both the rigid-body equations of motion and aerodynamic models. Typically,
more than one steady spin mode exists for an aircraft, and pitchfork and/or turning-
point bifurcations can lead to multiple steady solutions. In this paper a pitchfork
bifurcation was shown to cause the longitudinal trim condition to become unstable
and lead to the emergence of a pair of stable spiral modes. The turning points char-
acteristic of roll-coupling instabilities were shown to lead to jumps in the state of the
aircraft if a control-surface deflection was varied past the critical value. Hysteresis
may also occur due to the multiple steady solutions that occur between the pair of
turning-point bifurcations that arise in the roll-coupling instability.

Use of the full eighth-order equations of motion was shown to be necessary to
unravel the physics of roll-coupling instabilities. The instability was only found to
occur when the aircraft was in a spiral dive and the instability resulted in a transition
from one type of spiral to another. One spiral occurred at negative angles of attack
where the aircraft was orientated with the bottom towards the axis of the spiral. The
other spiral occurred at positive angles of attack where the top of the aircraft faced
the axis of the spiral. Additional details of the instability were discussed in terms
of the moment balances in the steady solutions. The pitching moment balance was
shown to be the key to the instability as the jump, causing a sign change in angle of
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attack, occurred as a result of the need to balance the inertial coupling moment in
pitch.

More generally, it was illustrated that using continuation methods for determining
steady solutions and time simulations for examining manoeuvres is a very fruitful
approach. Maps of steady solutions as functions of the parameters of the aircraft
provide a global view of the possible equilibrium solutions. Adding linear stability
information shows the equilibrium solutions that the aircraft may exhibit in flight,
while changes in stability signify instabilities. This global knowledge allows one to
use time simulations to examine interesting or troublesome regions of the flight enve-
lope. Steady solutions can typically be computed faster that time simulations, so the
combination of the two techniques has the potential to reduce computational costs.
The next step is to compute the basins of attraction of the various equilibrium solu-
tions. One would then be able to predict the final state of an aircraft for a given
initial condition. Jahnke & Chen (1995) have taken an initial step in determining
basins of attraction of steady solutions, but much work remains to be done.
Funding for this work was provided by the National Science Foundation under Grant no. CMS-
9409025.

Appendix A. Nomenclature

α angle of attack
β sideslip angle
δa aileron deflection
δe elevator deflection
δr rudder deflection
φ roll angle
θ pitch angle
ψ yaw angle
b wing span
c mean wing chord
g acceleration due to gravity
Ix moment of inertia about aircraft x-axis
Iy moment of inertia about aircraft y-axis
Iz moment of inertia about aircraft z-axis
` aerodynamic rolling moment
m aerodynamic pitching moment
M aircraft mass
n aerodynamic yawing moment
p roll rate
q pitch rate
Q dynamic pressure
r yaw rate
S wing surface area
T applied thrust
V aircraft speed
X aerodynamic force along aircraft x-axis
Y aerodynamic force along aircraft y-axis
Z aerodynamic force along aircraft z-axis
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